On the First Eigenvalue of a Fourth Order Steklov Problem
نویسندگان
چکیده
We prove some results about the first Steklov eigenvalue d1 of the biharmonic operator in bounded domains. Firstly, we show that Fichera’s principle of duality [9] may be extended to a wide class of nonsmooth domains. Next, we study the optimization of d1 for varying domains: we disprove a long-standing conjecture, we show some new and unexpected features and we suggest some challenging problems. Finally, we prove several properties of the ball.
منابع مشابه
Analysis of Natural Frequencies for a Laminated Composite Plate with Piezoelectric Patches using the First and Second Eigenvalue Derivatives
In this paper, the first and second order approximations of Taylor expansion are used for calculating the change of each natural frequency by modifying an arbitrary parameter of a system with a known amount and based on this approximation, the inverse eigenvalue problem is transformed to a solvable algebraic equation. The finite element formulation, based on the classical laminated plate theory...
متن کاملThe first biharmonic Steklov eigenvalue: positivity preserving and shape optimization
We consider the Steklov problem for the linear biharmonic equation. We survey existing results for the positivity preserving property to hold. These are connected with the first Steklov eigenvalue. We address the problem of minimizing this eigenvalue among suitable classes of domains. We prove the existence of an optimal convex domain of fixed measure. Mathematics Subject Classification (2000)....
متن کاملEvolution of the first eigenvalue of buckling problem on Riemannian manifold under Ricci flow
Among the eigenvalue problems of the Laplacian, the biharmonic operator eigenvalue problems are interesting projects because these problems root in physics and geometric analysis. The buckling problem is one of the most important problems in physics, and many studies have been done by the researchers about the solution and the estimate of its eigenvalue. In this paper, first, we obtain the evol...
متن کاملA Posteriori Error Estimates for the Steklov Eigenvalue Problem
In this paper we introduce and analyze an a posteriori error estimator for the linear finite element approximations of the Steklov eigenvalue problem. We define an error estimator of the residual type which can be computed locally from the approximate eigenpair and we prove that, up to higher order terms, the estimator is equivalent to the energy norm of the error. Finally, we prove that the vo...
متن کاملHeat Invariants of the Steklov Problem
We study the heat trace asymptotics associated with the Steklov eigenvalue problem on a Riemannian manifold with boundary. In particular, we describe the structure of the Steklov heat invariants and compute the first few of them explicitly in terms of the scalar and mean curvatures. This is done by applying the Seeley calculus to the Dirichlet-to-Neumann operator, whose spectrum coincides with ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007